Autocampionatori GC: supportiamo l'introduzione del campione liquido, in spazio di testa, SPME e P&T
Autocampionatori LC: HPLC, UHPLC, NanoLC, LC preparativa, FPLC, LC-MS
Autocampionatori per IC: esplora le soluzioni automatizzate di HTA per la Cromatografia Ionica
Autocampionatori per Spettroscopia Atomica: ICP-OES, ICP-MS, MP-AES, Assorbimento Atomico a Fiamma
Autocampionatori per Spettroscopia Molecolare e per analizzatori con Cella di Flusso
Autocampionatori per Spazio di Testa Dinamico per Nasi Elettronici, IMS e micro-GC
Introduzione automatica del campione. Soluzioni per produttori di analizzatori e centri di ricerca
Stazioni per la preparazione automatica del campione in cromatografia
Autocampionatore HPLC che automatizza la vostra routine di Estrazione in Fase Solida (SPE)
Sistema automatico per la preparazione dei campioni per l’analisi al citofluorimetro. Include centrifuga integrata
Software per gli autocampionatori HTA, espande le funzionalità degli autocampionatori
Integrazione con i Chromatography Data Systems e altri software di acquisizione dati
Software per le Stazioni Preparative HTA: permette di definire le routine di automazione
Quali consumabili sono compatibili con gli strumenti HTA? Consumabili proprietari o di libero commercio?
Negozio ufficiale ChromSelection per l'acquisto diretto dei consumabili
Scarica il catalogo ChromSelection per individuare i consumabili di interesse
Seleziona in base al marchio dell analizzatore
Seleziona in base alla tecnica analitica
Per saperne di più
Volatile organic compounds can be released from packaging materials. The determination of these compounds can be useful in assisting in the development and manufacture of packaging materials having minimal retained packaging solvents.
This work deals with determination of the amount of residual solvents released from a packaging material contained in a sealed vial under a given set of time and temperature conditions.
The packaging samples are analyzed by headspace-GC-FID. Each sample is analyzed with a GC equipped with an HT200H autosampler.
First of all a preliminary tested is performed to check the system reproducibility.
1uL of a solvent mixture (Ethanol, n-Propanol, i-Propanol, Ethyl acetate, Toluene) is added to four empty headspace vials.
Due to the low solvent amounts, the solvents totally evaporate during incubation. This process is called “total evaporation”. No matrix is present in the vials and so there is no alteration to the solvent concentrations in the gas-phase due to interfering substances. The solvent quantification can be performed using external or internal standards.
The results of the solvent residue analyses are shown in Table 1.The values reported are the absolute masses in the headspace vials. The outstanding reproducibility of the analysis is shown in the chromatograms in Figure 1.
After the preliminary test, the packaging foils analysis is performed.
The packaging foils analyzed in this work contain low amounts of ethanol and ethylacetate solvent residues. For the quantification, foil samples of specific surface areas (50 cm²) were prepared by insertion into headspace vials. The samples are heated to a specific temperature for 15 minutes. When the equilibrium is reached, a volume is drawn from the gas phase(headspace) of the vial and injected into the GC and quantified.
The presence of the foil provokes a matrix effect, the consequence is that the solvent residues do not evaporate completely into the gas-phase. In detail, a state of equilibrium is established between the gas-phase and the foil constituents. This matrix effect must be considered during quantification. A calibration in the presence of the matrix – in this case the foil – is therefore recommended. Consequently a calibration is performed in the form of a standard addition of the solvent mixture in Table 1. 0.5 uL and 1.0 uL of the solvent mixture are added to two identical samples (foils in headspace vials) and subsequently analyzed. The solvent residue concentration in the foil can be calculated from the slope and intercept of the calibration line shown in Figure 2. The quantification results are shown in Table 2.
When the peak areas obtained from standard addition analyses are compared with the data obtained from complete evaporation, significant deviations are clear. Using standard addition, the peak areas are up to 30 % smaller. This is due to the matrix effect. The matrix effect magnitude depends on the analyzed sample and the type of matrix.
Richiedi il TESTO INTEGRALE dell’applicazione